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a b s t r a c t

COVID-19 pandemic caused by novel coronavirus (SARS-CoV-2) crippled the world economy and
engendered irreparable damages to the lives and health of millions. To control the spread of the disease,
it is important to make appropriate policy decisions at the right time. This can be facilitated by a robust
mathematical model that can forecast the prevalence and incidence of COVID-19 with greater accuracy.
This study presents an optimized ARIMA model to forecast COVID-19 cases. The proposed method
first obtains a trend of the COVID-19 data using a low-pass Gaussian filter and then predicts/forecasts
data using the ARIMA model. We benchmarked the optimized ARIMA model for 7-days and 14-days
forecasting against five forecasting strategies used recently on the COVID-19 data. These include the
auto-regressive integrated moving average (ARIMA) model, susceptible–infected–removed (SIR) model,
composite Gaussian growth model, composite Logistic growth model, and dictionary learning-based
model. We have considered the daily infected cases, cumulative death cases, and cumulative recovered
cases of the COVID-19 data of the ten most affected countries in the world, including India, USA, UK,
Russia, Brazil, Germany, France, Italy, Turkey, and Colombia. The proposed algorithm outperforms the
existing models on the data of most of the countries considered in this study.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In early December 2019, cases of the coronavirus disease
COVID-19) originated in Wuhan city by a Severe Acute Respira-
ory Syndrome Coronavirus 2 (SARS-CoV-2) [1,2]. Within a short
pan of time, this virus quickly spread to a large population all
ver the world. It was declared an epidemic by the World Health
rganization (WHO) on 11th March 2020. This disease is highly
ontagious and has infected millions of people globally. The num-
er of deaths reported globally as of 15th May 2021 is more
han 3.5 million. It has hugely affected economic activities [3]
nd plunged millions into poverty. In countries such as USA,
razil, Italy, and India, the rapid increase in the number of cases
aused tremendous stress on the health care system. Its spread
as been contained to some extent in various countries by using
artial and complete lock-downs, maintaining social distancing,
nd imposing quarantine for the infected people. For the timely
mplementation of these measures, a mathematical understand-
ng of the future trend of the spread of disease is required.
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This can help the authorities announce control measures at an
appropriate time. Thus, an accurate forecast of COVID-19 cases is
extremely important to control its rapid spread and hence, ensure
the safety of the general public.

Researchers across the world have proposed various data-
driven methods to forecast COVID-19 data, which has been a
difficult and challenging task [4,5]. Predicting or forecasting refers
to estimating future cases on the basis of present and past data.
It is carried out majorly using two popular approaches. The first
approach includes compartmental models such as SIR, SIRD, SEIR
models [6] and the second is based on time-series learning meth-
ods such as curve-fitting [7,8], autoregression [9,10], and deep
learning on time-series data [11,12].

Compartmental models are the traditional methods of fore-
casting infectious diseases [13]. In these models, the spread of
infectious diseases is simulated by stochastic differential equa-
tions that describe interactions between different compartments
of the population (e.g. susceptible, infectious, and recovered).
This approach majorly includes Susceptible–Infected–Removed
(SIR) [14], Susceptible–Infected–Removed–Death (SIRD) [15,16]
and Susceptible–Exposed–Infected–Removed (SEIR) models [17].
Hybrid models designed using compartmental models and deep
learning frameworks have also been proposed recently [18]. Com-
partmental models are based on the assumption that the chance
of an infected person to infect another susceptible person is
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Fig. 1. Block diagram of the proposed methodology.

Fig. 2. Normalized RMSE values for cumulative recovered COVID-19 data,
obtained when different metrics are used to select the optimum ARIMA model.

constant during the epidemic duration and also, every infected
person has a constant chance to recover at any given time, which
might not be true [19].
2

Fig. 3. Normalized RMSE values for the cumulative COVID-19 death data,
obtained when different metrics are used to select the optimum ARIMA model.

Fig. 4. Normalized RMSE values for the daily new COVID-19 infections data,
obtained when different metrics are used to select the optimum ARIMA model.

Another popular approach is to fit the curves of certain shapes
such as logistic [20] and Gaussian [21] to the available data
and find parameters that yield optimal results with curve-fitting.
Simple curve-fitting approaches typically support parameter esti-
mation of a single wave characterized by a single peak throughout
the epidemic duration. However, fitting the data with only one
wave may be incorrect since, in general, there are several recur-
ring waves that emerge and die throughout the epidemic dura-
tion [22]. To overcome this drawback, some recent works have
decomposed the available data into multiple overlapping waves,
where every single wave is a generalized growth model such as
the logistic or the Gaussian growth models [7,8,14]. This is to note
that both the compartmental and the curve fitting approaches are
model-driven and require the estimation of parameters of some
predefined mathematical model. Recently, a completely new ap-
proach has been applied to predict the spread of COVID-19. This

includes sparse representation based on dictionary learning and
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Fig. 5. Actual COVID-19 data and the estimated values as obtained using the proposed modeling scheme for 5(a) daily infections, 5(b) death cases, and 5(c) recovered
cases for India, 5(d) daily infections, 5(e) death cases, and 5(f) recovered cases for USA.
Online Non-negative Matrix Factorization (ONMF) [23]. Modeling
of signals through sparse representation has been very useful in
different applications [24–26]. This modeling approach is totally
model-free and does not assume any predefined mathematical
model for prediction. In this method, evolution of COVID-19
reported cases is expressed as a sparse linear combination of
the dictionary atoms. By recursively and progressively improving
dictionary atoms to the most recent COVID-19 data, forecast-
ing of cases is done using partial fitting [23]. Another widely
used time-series approach is the Auto-Regressive Integrated Mov-
ing Average (ARIMA) modeling [27] because the data of many
countries has an inherent non-stationary trend. Thus, the ARIMA
model has been used widely by various authors for modeling
and forecasting COVID-19 data [28–30]. To improve the perfor-
mance of traditional ARIMA, Sharma et al. [31] used eigenvalue
decomposition of the Hankel matrix to decompose the time-
series into various stationary and non-stationary components.
The decomposed signals were then modeled using ARIMA.

So far, several types of methods have been proposed for de-
cribing the time evolution of COVID-19 epidemic. Irrespective
3

of the huge progress in proposing various methods for COVID-
19 prediction, this research area is still nascent and requires a
comparison of various prediction methods in detail. The litera-
ture search did not reveal any review of available models and
thus, this work reviews various approaches mentioned in brief
above. In addition, we compare the performance of these models
by assessing the Root Mean squared error (RMSE) obtained for
predicting the 7 days and 14 days future cases for the data
of highly infected countries including India, USA, UK, Russia,
Brazil, Germany, France, Italy, Turkey, and Colombia. We con-
sidered five different models including ARIMA, SIRD, composite
Gaussian growth model, composite Logistic growth model, and
ONMF model. The performance of the ARIMA model in predict-
ing the short-term future is better than the other models for
most of the cases as observed using the simulation studies. To
further improve the results of the existing ARIMA model, we
propose a modeling scheme by first filtering the data using a
low-pass Gaussian filter to estimate the trend in the data. This
low-frequency version of the data is then modeled using the
optimized ARIMA models. Experimental results show that the
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Fig. 6. Actual COVID-19 data and the estimated values as obtained using the proposed modeling scheme 6(a) daily infections, 6(b) death cases, 6(c) recovered cases
for Brazil, 6(d) daily infections, 6(e) death cases, and 6(f) recovered cases for UK.
performance of the proposed optimized ARIMA model is supe-
rior to traditional ARIMA in most of cases because it is able to
efficiently estimate the trend of the data.

The main contributions of this study are summarized as be-
ow:

• We have carried out a comprehensive review, comparison,
and benchmarking of five popular data modeling meth-
ods, namely SIR, ARIMA, composite logistic growth model,
Composite Gaussian model, and dictionary learning for fore-
casting and monitoring of COVID-19 pandemic.

• We have also proposed an optimized ARIMA model for
predicting COVID-19 cases. This method provides minimum
prediction error compared to the existing methods.

• We have reported 7-days and 14-days forecasting of the
number of infected, recovered, and deaths of the COVID-
19 data for the ten most affected counties. These models
provide good prediction accuracy for the upcoming three
weeks. However, the prediction accuracy declines gradually
with the increase in prediction time.
4

This paper is organized as follows. In Section 2, we provide
a brief overview of various forecasting methods available in the
literature on COVID-19 data modeling. In Section 3, we pro-
vide a description of our proposed method. In Section 4, we
present results. Finally, we discuss various results and conclude
in Sections 5 and 6, respectively.

2. Existing methodologies

In this section, we discuss some of the existing modeling
methods popularly used in the literature for modeling and fore-
casting COVID-19 data.

2.1. Susceptible-Infected-Removed (SIR) Models

SIR model [39] or its different variants such as the Susceptible–
Infected–Recovered–Death (SIRD) model [32] or the Susceptible–
Exposed–Infectious–Removed (SEIR) model [17] have been used
to model the spread of diseases like dengue fever and malaria [40,
41]. Recently, various authors, [15,16,33,42], have used these
methods for the modeling of data of COVID-19 prevalence. The
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Fig. 7. Actual COVID-19 data and the estimated values as obtained using the proposed modeling scheme for 7(a) daily infections, 7(b) death cases, and 7(c) recovered
cases for Russia, for 7(d) daily infections, 7(d) daily infections, 7(e) death cases, and 7(f) recovered cases for Germany.
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traditional Susceptible–Infected–Recovered–Dead (SIRD)
model [32] can be described using the following equations:

dS
dt

=
−βIS
N

, (1a)

dI
dt

=
βSI
N

− γ I − µI, (1b)

dR
dt

= γ I, (1c)

dD
dt

= µI, (1d)

here S(t), I(t), R(t), and D(t) are the numbers of susceptible,
infected, recovered, and death cases, respectively, β is the con-
act/infection rate (i.e., the average number of contacts per person
er unit time) and γ is the recovery rate, i.e., 1/γ represents the
verage infectious period. Here, µ is the death rate. The initial
alues considered are S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0,
nd D(0) = D0 ≥ 0. It is assumed that S(t) + I(t) + R(t) +

(t) = N , where N is a constant and refers to the total population
ize. An important feature of the SIRD model is the estimated
5

eproduction number, R0 =
βS

N(γ+µ) > 1. This number provides
an indication about the spread of the disease as the number of
susceptible cases getting infected from one infected person. If
R0 > 1, the number of cases are increasing, as in the start of an
epidemic, R0 = 1 indicates the disease is endemic, and R0 < 1
ndicates a decline in the number of cases.

In [42], SIR approach has been used to model the prevalence
f COVID-19 data in China. In [15], a modified SIRD model is
roposed to estimate COVID-19 data for five countries including
ndia, USA, China, Italy, and France. This model considers the
ctive, dead, and recovered cases simultaneously. It also considers
he effect of quarantine and asymptomatic cases on the SIRD
odel that was otherwise not present in the traditional SIRD
odel. In [16], SIRD model is used on the COVID-19 data of

taly. The parameters of the proposed model were considered
o be time-varying and were expressed as linear combinations
f the basis functions. Sparse identification methodologies were
sed to obtain these functions from the given COVID-19 data.
he non-convex identification problem of estimating the model
arameters was handled by a one-dimensional grid search in the
uter loop and using Lasso optimization in the inner step. In [34],
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Fig. 8. Actual COVID-19 data and the estimated values as obtained using the proposed modeling scheme for 8(a) daily infections, 8(b) death cases, and 8(c) recovered
cases for France, 8(d) daily infections, 8(e) death cases, and 8(f) recovered cases for Turkey.
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Susceptible–Infected–Recovered for Asymptomatic–Symptomatic
and Dead (SIRASD) model is used for Brazil COVID-19 data of
25th February 2020 to 30th March 2020 considering the long and
short term effects of social distancing. In [33], the best data-fitted
curves have been obtained using the Gaussian mixture model
(GMM) and composite logistic growth model (CLGM) to find
the optimum SIRD model for COVID-19. SIRD model parameters
are derived as time-varying quantities, which is closer to the
real-life scenario and can capture the inherent changes in the
characteristic of the pandemic with time. The above changes can
be due to various government policies, restrictions on domestic
and international travel, quarantine rules imposed and also due
to the medical facilities available in every country. The number
of Gaussian (or LGM) waves and the parameters for each wave is
estimated by the minimization of the objective function given by
the sum of squares for residuals of values [7,43]. The minimiza-
tion process uses the simplex search method in order to estimate
the optimal values of the unknown parameters. Finally, the time-
varying parameters of the SIRD model are computed from (1) as
 w

6

β = −
dS
dt

.
N
IS

, γ =
dR
dt

.
1
I
, (2a)

µ =
dD
dt

.
1
I
, and R0 =

βS
N(γ + µ)

. (2b)

.2. ARIMA modeling

ARIMA model is a very popular time-domain model and has
een used by various authors to model the prevalence or inci-
ence of diseases such as SARS, HAV, Malaria, HFRS, Tuberculosis,
ertussis, Hepatitis, SFTS, HBV, Influenza, Human Brucellosis, In-
ectious Diarrhea, and Dengue Fever [44–49]. It has been used
y several authors to predict the cumulative COVID-19 infec-
ions, the number of deaths reported, and the recovered cases for
ifferent countries.
In [29], ARIMA model is used to forecast the prevalence and

ncidence of COVID-19 for the next two days using the data from
0th January 2020 to 10th February 2020. Results were presented

ith 95% confidence. Data in the considered time range did not



B. Fatimah, P. Aggarwal, P. Singh et al. Applied Soft Computing 122 (2022) 108806

t
2
w
C
m
a
f

Fig. 9. Actual COVID-19 data and the estimated values as obtained using the proposed modeling scheme for 9(a) daily infections, 9(b) death cases, and 9(c) recovered
cases for Italy, 9(d) daily infections, 9(e) death cases, and 9(f) recovered cases for Colombia.
present any seasonality. ARIMA (1,0,4) and ARIMA (1,0,3) models
were selected as the best fit models. In [30], ARIMA model is
used to capture the daily confirmed cases in Italy from 20th
February, 2020 to 4th April, 2020. The seasonality of the data
was tested using the Augmented Dickey–Fuller (ADF) test and
the modified ADF-GLS (or ERS) test for unit root. The order of
ARIMA was determined using Akaike’s information criterion (AIC)
and the mean absolute error (MAE). Perone further performed
diagnostic tests on the residual data obtained using the selected
ARIMA model including the Doornik and Hansen test for normal-
ity, Engle’s Lagrange Multiplier test for the ARCH (autoregressive
conditional heteroskedasticity) effect, and the Ljung–Box test for
the autocorrelation.

The ARIMA model has been used in [35] to forecast the next
en days’ cases using the data available from 31st January 2020 to
5th March 2020. Also, a nonlinear autoregressive neural network
as used to forecast the next 50 days’ data. Bayesian Information
riteria (BIC) was used to select ARIMA (1,1,0) model. It was
entioned that the autocorrelation function (ACF), and the partial
utocorrelation function (PACF) can be used to choose the best
it and autocorrelation can be used to perform a diagnostic test
7

on the residual signal. It was also mentioned in this work that
BCI criteria is another method employed for model selection. The
authors predicted that the number of new infections by 24th
May 2020 will reach 1500. However, the actual numbers reached
were 7113. In [36], data of 15 countries was considered from 21st
January 2020 to 24th April 2020. The countries included were:
United States, United Kingdom, Turkey, China, Russia, Nether-
lands, Switzerland, Germany, Iran, Brazil, Spain, Italy, France,
Canada, and Belgium. Confirmed cases, recovered cases, and the
deaths reported were modeled using the ARIMA model. Authors
estimated that by 7th July 2020, the confirmed cases, deaths, and
recoveries would be doubled in all countries considered in the
study except China, Switzerland, and Germany. For the United
States, the cumulative confirmed cases on 7th July 2020 were 3.33
times the cases on 24th April 2020, for the United Kingdom the
data became 2.21 times, Turkey 1.98 times, Brazil 31.60 times,
Spain 1.14 times, Russia 10.12 times, France 1.37 times, Italy 1.25
times, Canada 2.42 times, and Belgium 1.34 times.

In [28], ARIMA(2,1,1) model was used to obtain a four-week
prediction for per day new infections in Saudi Arabia. It was
estimated that the per day cases will reach 7,668 by 21st May
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Fig. 10. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 10(a) daily infections, 10(b) death cases, and 10(c)
recovered cases for India, 10(d) daily infections, 10(e) death cases, and 10(f) recovered cases for USA.
2020. However, the cases reported were 2,532. In [37], ARIMA
(0,2,1), ARIMA (1,2,0), and ARIMA (0,2,1) were used to model
prevalence of COVID-19 in Italy, Spain, and France, respectively.
The models were selected based on the lowest MAPE values.
Data from 21st February 2020 to 15th April 2020 was used and
the total confirmed cases for the next ten days were predicted.
The data of France was predicted with an RMSE of 9.1762e3,
Italy was predicted with 2.1004e3 RMSE and the data of Spain
was predicted with an RMSE of 3.2774e4. In [38], the spatial
distribution of COVID-19 in Indian districts were analyzed and the
prevalence and incidence of the disease were predicted using the
ARIMA(2,2,2) model. Data from 30th January 2020 to 26th April
2020 was used to predict the data from 27th April 2020 to 11th
May 2020.

In [9], a relationship between the number of COVID-19 cases
and the population of the country is illustrated. Data of 145 coun-
tries have been modeled and the countries are grouped based
on their proximity to each other. The study assumes that the
spread of the disease is affected by various measurable and non-
measurable factors that will remain similar in countries closer to
each other. The average RMSE obtained in this case was 144.8.
8

In [10], outbreaks of COVID-19 in Japan and South Korea were
modeled using ARIMA(6,1,7) and ARIMA(2,1,3), respectively, for
the duration from 20th January 2020 to 26th April 2020. The
number of new infections per day for the next seven days was
forecasted.

2.3. Multi-wave curve fitting model

In general, the evolution of the reported cases is modeled as
a single wave (single peak wave). However, fitting the data with
only one wave may not always be correct, since there are usually
several waves with multiple peaks of the epidemic, while one
wave captures very less fluctuations present in the data [7,8,14,
19].

Some recent works are based on the assumption that multiple
waves of a different peak, amplitude, and shape emerge and van-
ish overtime during the epidemic duration [7,8,14]. These works
decompose the evolution of reported cases into several basic
‘waves’, where each basic wave is considered as a representation
of the epidemic, both localized in time and position. Every single
wave is considered as one of the known growth models such as
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Fig. 11. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 11(a) daily infections, 11(b) death cases, and 11(c)
recovered cases for Brazil, 11(d) daily infections, 11(e) death cases, and 11(f) recovered cases for UK.
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the logistic or Gaussian. Briefly, we explain below both of these
models.

2.3.1. Composite logistic growth model
First, we present the modeling framework with a single wave,

i.e., with P = 1 for the logistic growth model. The logistic growth
model is often used in epidemiology to model the spread of
the infection [7,50,51]. Here, the number of infections initially
grows exponentially, but later declines as the numbers approach
the population’s carrying capacity, where the carrying capacity is
denoted as the number of people that can be infected eventually
in a population. The cumulative number of infections on the tth
day, denoted as C(t), using the logistic growth model can be
written as

C(t) =
K

1 + Ae−rt , (3)

where K is the carrying capacity, A denotes the number of persons
initially infected, and r is the growth rate. Corresponding to this
model, the number of infected persons on the tth day, I(t), is
9

given by

I(t) =
dC(t)
dt

=
KAre−rt

(1 + Ae−rt )2
. (4)

For any country, the numbers reported on day-0 (day of ref-
erence) are those that are active on that day. Hence, these are
the cumulative numbers until that day and are equal to C(0).
Substituting t = 0 in (3) and (4), we obtain C(0) = C0 =

K
1+A

hat implies A =
K
C0

− 1, while C∞ = K . Also, C(0) − ϵ = I(0).
I(0) =

KAr
(1+A)2

, and A =
K
C0

− 1. The values of K , A, r , C0 and I0 are
etermined from the curve fitting of the available data.
The composite logistic growth model can be written as [52]

(t) =

P∑
i=1

Ki

1 + Aie−ri(t−τi)
, (5)

where the number of waves P , and the four parameters
(Ki, Ai, ri, τi) for each wave are estimated by minimization of the
objective function, which is the sum of squares of residuals [7,
43,53]. The minimization uses the simplex search method [54] to
estimate optimal values of these unknown model parameters.
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Fig. 12. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 10(a) daily infections, 10(b) death cases, and 10(c)
recovered cases for India, 10(d) daily infections, 10(e) death cases, and 10(f) recovered cases for USA, 11(a) daily infections, 11(b) death cases, and 11(c) recovered
cases for Brazil, 11(d) daily infections, 11(e) death cases, and 11(f) recovered cases for UK, 12(a) daily infections, 12(b) death cases, and 12(c) recovered cases for
Russia.
Table 1
Summary of state-of-the-arts techniques used for COVID-19 data modeling.
Methodology Ref. Strength Weakness

Compartmental
models (SIR, SIRD,
etc.)

[14–16,32–34] 1. Model the spread of the disease
using the interaction between
different population compartments
which is a more natural model.
2. Provide estimates of the important
parameters like infection rate,
recovery rate, death rate, and
reproduction number of the
epidemic.
3. Reproduction number is the most
useful for planning and deciding
control strategies.

These models make two
assumptions: (i) the chance of any
infected person to infect other
susceptible persons is constant
during the epidemic duration, and (ii)
assume that every infected person
has a constant chance to recover at
any given time. Both of these may
not be true. Moreover, a precise and
closed-form solution of all the system
parameters is difficult to obtain.

ARIMA [9,10,28–30,35–
38]

It is a parametric model which can
fit non-stationary data.

It does not perform well if the
correlation in data samples is
negligible.

Multiwave Fitting
(Gaussian and
Logistic)

[7,8,14]. These are parametric models which
can capture multiple emerging waves
of epidemic.

Require predefined shape of the
waves and estimations of parameters
for fitting.

Dictionary Learning [23] It is a non-parametric model which
can capture any shape of epidemic
wave.

Requires large amounts of data. The
training process is expensive
involving selection of large number
of hyperparameters.
2.3.2. Composite Gaussian model
Next, we model I(t) using the Gaussian function. Here, the

umber of infected persons I(t) on the tth day is given by

(t) = α e−
(t−µ)2

2σ2 , (6)

where µ denotes the mean, σ 2 denotes the variance of the Gaus-

sian function, while I = α e−
µ2

2σ2 . Thus, the composite Gaussian
0

10
model can be written as

I(t) =

P∑
i=1

Ii(t) =

P∑
i=1

αi exp
(

−
(t − µi)2

2σ 2
i

)
, (7)

where regression parameters αi, µi and σi are the amplitude,
mean, and standard deviation, respectively.

The model is utilized for a maximum of five epidemic waves.
The sum of all the waves should predict the main reported cases.
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Fig. 13. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 13(a) daily infections, 13(b) death cases, and 13(c)
recovered cases for Germany, 13(d) daily infections, 13(e) death cases, and 13(f) recovered cases for France.
2.4. Dictionary learning model

In one of the recent works [23], forecasting of COVID-19 is
done using dictionary learning and ONMF. This approach mainly
consists of four steps. First, the dictionary is learned by minibatch
learning from the entire duration of COVID-19 data, followed by,
progressively adapting and improving the learned dictionary via
ONMF. Later, a one-step prediction is made by partially fitting a
learned dictionary to the known data so as to get a forecasted
value of one day ahead. Lastly, by recursively applying the one-
step predictions, extrapolation of predictions for the near future
is done. We name this method as ONMF, from here onwards.

The pseudo-code of the method is as follows:

• Dictionary learning: The first step deals with dictionary
learning. Consider the number of days T for which the data
x ≡ (x1, x2, . . . , xT ) is available. Random patches of length
N are extracted from this data and stacked as columns of
matrix X.

N×d
X = [x1, x2, . . . , xd] ∈ R , (8)

11
where xi ∈ RN×1. Given a data matrix X, the goal is to
find nonnegative dictionary W ∈ RN×r and nonnegative
code matrix H ∈ Rr×d by solving the following optimization
problem:

inf
W∈RN×r ,H∈Rr×d

∥X − WH∥
2
F + λ ∥H∥1 , (9)

where ∥A∥
2
F =

∑
i,j A

2
ij denotes the matrix Frobenius norm

and λ ≥ 0 is the regularization parameter. W represents
the learned dictionary having r number of atoms and H
represents the code matrix. Above optimization problem is
also known as the Nonnegative matrix factorization (NMF)
problem.

• Refining the learned dictionary: In the second stage, the
learned dictionary is further updated using online NMF.
Here, Online implies learning the sequence of dictionary
matrices from the sequence of data matrices X, generated
by moving one day ahead and considering all previous data
points.

• Forecasting: Further, a learned dictionary is used to pre-
dict one day ahead data by partial fitting and updating
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Fig. 14. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 13(a) daily infections, 13(b) death cases, and 13(c)
recovered cases for Germany, 13(d) daily infections, 13(e) death cases, and 13(f) recovered cases for France, 14(a) daily infections, 14(b) death cases, and 14(c)
recovered cases for Turkey, 14(d) daily infections, 14(e) death cases, and 14(f) recovered cases for Italy.
H. For more details of this framework, please refer to the
work by [23]. By recursively using the one-step predictions,
extrapolation of the future values is carried out.

2.5. Strengths and weaknesses of forecasting models

To summarize, several approaches have been proposed by re-
searchers to predict the COVID-19 outbreak including SIR models,
and variants, ARIMA modeling, multi-wave curve fitting modeling
and dictionary learning modeling. Among all, compartment mod-
els (SIR and its variants) are the most frequently used approach
so far [55] and dictionary learning modeling is the least used
method in the literature for COVID-19 forecasting. In essence, all
these methods exhibit many pros and cons, which are described
in Table 1.

3. Proposed model

In this work, we propose modeling based on the ARIMA model
to forecast the daily infections, cumulative deaths, and cumula-
tive recovered cases of COVID-19. Since the COVID-19 data for
12
various countries is non-stationary, traditional ARMA methods
may not be sufficient to capture the data efficiently. In such cases,
ARIMA performs better by capturing the trend or seasonality in
the data. To further improve the performance of ARIMA models,
we propose to add a pre-processing step to the ARIMA model and
estimate the trend in the data using a low pass Gaussian filter as
shown in Fig. 1.

In [27], a method is proposed to estimate an ARIMA model.
ARIMA models are considered as a generalization of ARMA mod-
els to predict a given time series data using its past values. While
ARMA models are used to fit the time-series data with stationary
property, ARIMA has been developed for data with inherent non-
stationarity or with seasonality trends. The ARIMA model can be
understood in two steps, where the first step removes the non-
stationary trend from the data, and the second step models the
output obtained from the first step using an ARMA model. The
model is denoted as ARIMA(p, d, q), where p denotes the order of
AR, q is the order of MA, and d represents the degree of difference
used in the model, mathematically, expressed as follows:

y(t) = (1 − B)dx(t), (10)
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Fig. 15. Actual COVID-19 data and the forecasted values as obtained using the proposed modeling scheme for 15(a) daily infections, 15(b) death cases, and 15(c)
recovered cases for Colombia.
(
1 −

p∑
k=1

a(k)Bk

)
y(t) =

(
1 +

q∑
k=1

b(k)Bk

)
e(t), (11)

where B is the back-shift operator, Bp represents back-shift by
p-steps, and x(t) is the non-stationary time series data to be
modeled. In the first step, (10), signal x(t) is converted to a
stationary signal y(t). Step 2 models the signal y(t) using an ARMA
model as depicted in (11), where a(k) are the auto-regressive
model coefficients, b(k) are the moving average coefficients, and
e(t) is the error signal.

The Box–Jenkins method used for the modeling of data with
the best ARIMA model involves three steps: model selection,
parameter estimation, and model validation. For a given time-
series, the order of the model can be estimated using the sample
autocorrelation function (ACF) and partial autocorrelation func-
tion (PACF). If the data has an inherent seasonal trend, the initial
differencing step is used once or more than once to convert the
data to a stationary series. The output of the differencing step is
checked after every iteration using the ACF plot. For a stationary
series, the values of the ACF should rapidly converge to zero. If it
is not so, the differencing step should be repeated. The number of
times the differencing step is repeated to obtain the stationarity
provides the order value for d. ACF is also used to estimate the
MA order, q, with the assumption that for pure MA processes ACF
values converge to zeros after lag q. Similarly, it can be observed
that for a pth order pure AR processes values of the PCF become
zero after lag p. Akaike information criterion (AIC) or the Bayesian
Information Criterion (BIC) can be used to obtain the optimum
order of ARMA, where the objective is to minimize AIC or BIC
values. Once the values for p, q, and d are obtained, the model can
be estimated using either the maximum likelihood estimation or
the least-squares estimation.

In this work, we first filter the given time-series using a Gaus-
sian filter to obtain its low pass version which is then modeled

using ARIMA. Here, the stationarity of the low pass signal is

13
checked, and accordingly the parameter value for d is obtained.
The stationary signal obtained after differencing is estimated
using ARMA and optimum p and q parameters are selected. The
cut-off frequency of the low pass filter is changed and the best
ARIMA models are obtained for each case. It is pertinent to
mention that since the ARIMA model is developed for the low
pass version, whereas our main goal is to estimate the given
time-series and forecast the future values, metrics proposed in
the Box–Jenkins ARIMA modeling method such as BIC may not
be a correct choice. BIC and AIC values will prefer the model
that can estimate the low pass signal efficiently, but not the
original series. For this reason, we have used several different
metrics such as RMSE, MAPE (mean absolute percentage error),
MAE (mean absolute error), MARE (mean absolute relative error),
RMSRE (root mean square relative error), MSPE (mean square
percentage error), and MSE (mean square error) to select the
optimum model. We can empirically select the metric that gives
the model which estimates the original series the best. If the
obtained ARIMA model can estimate the time-series efficiently,
the residual signal should be white and this fact can also be used
to validate the model. Statistical tests on the residual value can be
used such as Ljung–Box Q test, Box–Pierce test, Breusch–Godfrey
test, and the Durbin–Watson test. In this work, we have used the
Ljung–Box Q test for checking the estimated model.

4. Results

In this section, we present the simulation results for modeling
and predicting the COVID-19 data for ten countries, including
India, the USA, the UK, Russia, Brazil, Germany, France, Turkey,
Italy, and Colombia. The data used in this paper involves the
cumulative recovered cases, cumulative death cases, and number
of new infections as collected from the Worldometer [56] and
WHO daily situation report [57]. The data from February 15 2020
till April 14 2021 has been used for modeling and the data for the
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Fig. 16. A comparison of the proposed model in terms of relative RMSEs in forecasting next 14-days cases (recovered, death and infected cases) with ARIMA, SIRD,
Gaussian growth, composite Logistic growth, and ONMF models for 16(a) India, 16(b) USA, 16(c) Brazil, 16(d) UK, 16(e) Russia, and 16(f) Germany.
next 14 days is used for validating the prediction performance
of the model. We compare the performance of the proposed
method with the ARIMA model, SIRD model, composite Gaussian
model, composite logistic growth model, and ONMF model. These
models are used to forecast the next 7 days and 14 days data and
the RMSE values obtained are compared in Table 2. Results for
the SIRD model have been obtained using the model discussed
by [33] and results for the ARIMA model are obtained using the
Box–Jenkins approach [27].

Figs. 2 and 3 show the normalized RMSE values obtained when
ifferent metrics are used to select the optimum ARIMA model to
stimate the cumulative recovered data and death data for the
en countries considered. Using this, we observed that models
elected on the basis of BIC value and RMSRE values provide the
est estimates in most of the cases for cumulative recovered and
14
death cases, respectively, and thus, these metrics were selected
for the given data series. Furthermore, Fig. 4 shows normalized
RMSE values obtained when different metrics are used to select
the optimum ARIMA model to estimate the daily infection data.
Here, it is observed that the models selected using the MSPE
values are optimum in most of the cases and thus, MSPE is the
chosen metric for the daily infection data.

The proposed method has been used to model the COVID-19
data from February 15, 2020 till March 31, 2021. Figs. 5–7 shows
the actual data, estimated data and the forecasted data for the
next 14 days as obtained using the proposed model for India, USA,
Brazil, UK and Russia, Germany and Figs. 8–9 includes the graphs
for France, Turkey, Italy and Colombia. Figs. 12–15 show the
performance of the proposed algorithm in forecasting the short-

term future data of the ten countries considered. The figures
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Fig. 17. A comparison of the proposed model in terms of relative RMSEs in forecasting next 14-days cases (recovered, death and infected cases) with ARIMA, SIRD,
Gaussian growth, composite Logistic growth, and ONMF models for 17(a) France, 17(b) Italy, 17(c) Turkey, 17(d) Colombia, and 17(e) an average of the ten countries.
include the actual data, the output of the Gaussian filter, and the
forecasted data with 95% confidence interval. Table 3 provides the
order of the ARIMA models obtained with the proposed method.

The relative RMSE of a model is defined here as the ratio
f the RMSE obtained using the model to RMSE obtained with
he proposed method. This gives a metric to compare the RMSEs
btained using different models and compare the performance
f the proposed method as compared to existing modeling tech-
iques. The relative RMSEs so obtained are plotted as histograms
n Figs. 16–17 for all ten countries and also the average obtained
fter removing outliers is plotted as well.

. Discussion

Compared to the existing methodologies, the models obtained
sing the proposed methodology predict the future cases far
etter for India, UK, Russia, and Colombia as shown in Table 2
nd Figs. 16(a), 16(d), 16(e), 17(d). For India, the performance
15
of ARIMA for both 7 days and 14 days forecasts is very poor
compared to the proposed methodology. As compared to the
RMSE obtained using the proposed method, RMSE obtained with
ARIMA is 4.19 times for recovered cases, 3.95 times for death
cases, and 3.3 times for infected cases. In these cases, we observe
that the proposed method estimates the low pass version of the
actual data efficiently, as shown in Figs. 5–9. Also, the future cases
follow this low-pass trajectory as shown in Fig. 12 and Fig. 15.
The reported cases depend on various external factors such as
socio-economic activities, policy changes, festivals, holidays, local
weather, etc., and also on the number of testing being done. These
changes may cause sudden fluctuations in the time series. In
the case of India, the future cases were not dependent on these
fluctuations and therefore, estimation using a low pass trend of
the time-series produced better prediction results. In cases of
number of new infections, the performance of Gaussian curve
fitting is closer to the proposed method with its 1.58 times RMSE
as compared to the proposed method.
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Table 2
RMSE values obtained for predicting the 7 days and 14 days ahead cases using
the proposed methodology for ten most affected countries.
Country Model RMSE

Recovered Death Infected

7 days 14 days 7 days 14 days 7 days 14 days

India

Proposed 9.25e3 3.10e4 120.11 611.73 5.05e3 1.89e4
ARIMA 3.97e4 1.30e5 901.55 2.41e3 3.01e4 6.24e4
SIRD 9.63e5 1.21e6 8.47e3 1.12e4 9.38e4 1.28e5
Gaussian 1.55e5 3.42e5 1.97e3 4.24e3 1.28e4 2.99e4
Logistic 3.33e5 5.69e5 4.02e3 6.62e3 5.20e4 8.54e4
ONMF 2.84e4 6.39e4 4.13e3 6.83e3 1.97e4 3.12e4

USA

Proposed 9.73e3 8.31e3 259.37 250.48 7.57e3 7.83e3
ARIMA 1.25e4 3.22e4 640.03 1.42e3 3.39e3 5.81e3
SIRD 2.34e6 2.33e6 1.88e5 1.88e5 4.65e4 5.30e4
Gaussian 3.56e5 7.89e5 7.89e3 1.24e4 1.47e4 1.86e4
Logistic 2.23e5 3.39e5 7.89e3 9.74e3 4.74e4 5.38e4
ONMF 9.37e5 1.01e6 8.72e3 2.30e4 4.78e4 7.64e4

Brazil

Proposed 3.11e4 3.02e4 1.00e3 1.99e3 1.97e4 1.79e4
ARIMA 1.87e4 5.83e4 1.74e3 2.89e3 1.85e4 1.45e4
SIRD 1.50e5 1.08e5 8.19e3 1.37e4 2.40e4 2.32e4
Gaussian 1.49e5 2.24e5 6.41e3 1.28e4 2.30e4 2.34e4
Logistic 2.38e5 3.71e5 1.05e4 1.43e4 2.33e4 2.62e4
ONMF 5.36e4 9.68e4 1.08e4 1.81e4 1.12e4 2.02e4

UK

Proposed 3.37e4 8.25e4 16.35 88.56 461.83 656.06
ARIMA 9.23e4 1.78e5 108.49 260.69 1.32e3 1.75e3
SIRD 1.08e5 4.05e5 1.37e4 4.98e4 549.65 717.55
Gaussian 1.02e5 2.78e5 2.29e3 3.61e3 1.39e3 1.46e3
Logistic 7.81e3 2.08e4 1.47e3 1.54e3 2.72e3 2.60e3
ONMF 6.02e4 5.19e4 2.15e3 5.66e3 1.54e4 2.01e4

Russia

Proposed 1.03e3 1.02e3 21.02 44.64 288.94 293.62
ARIMA 2.54e4 6.69e3 44.66 140.42 288.94 293.63
SIRD 6.48e5 6.54e5 7.48e3 7.53e3 3.40e3 3.85e3
Gaussian 4.09e4 6.60e4 1.53e3 3.29e3 549.68 674.91
Logistic 6.08e4 8.12e4 1.81e3 2.36e3 4.11e3 4.40e3
ONMF 3.63e4 3.94e4 1.33e3 1.57e3 4.33e3 6.42e3

Germany

Proposed 1.20e3 6.76e3 76.91 239.44 5.41e3 4.75e3
ARIMA 3.53e3 1.06e4 36.11 199.61 4.48e3 3.78e3
SIRD 2.56e5 3.00e5 1.06e4 1.11e4 1.32e4 1.45e4
Gaussian 8.49e3 1.29e4 1.88e3 4.96e3 7.64e3 7.44e3
Logistic 2.23e4 4.18e4 1.08e3 1.644e3 6.90e3 7.81e3
ONMF 2.52e4 4.41e4 867.09 857.56 3.07e3 4.15e3

France

Proposed 8.22e3 3.93e4 74.75 158.06 1.68e4 1.44e4
ARIMA 1.24e4 4.83`e4 66.39 195.75 1.68e4 1.50e4
SIRD 1.52e3 1.70e3 7.00e4 7.10e4 2.63e4 2.16e4
Gaussian 6.63e3 1.12e4 1.88e3 4.32e3 2e4 1.80e4
Logistic 4.80e3 6.90e3 1.79e3 2.56e3 3.02e4 2.5e4
ONMF 1.22e4 2.05e4 1.22e4 2.05e4 5.14e3 8.08e3

Turkey

Proposed 4.42e3 5.09e4 21.85 218.01 1.93e3 3.01e3
ARIMA 8.42e3 5.72e4 77.92 372.51 2.70e3 5.46e3
SIRD 9.62e5 9.72e5 6.11e3 6.32e3 2.52e4 3.13e4
Gaussian 7.66e4 1.54e5 734.78 1.35e3 3.91e3 4.85e3
Logistic 2.35e5 3.38e5 1.75e3 2.59e3 2.61e4 3.35e4
ONMF 1.37e5 2.15e5 502.25 1.01e3 828.96 1.05e3

Italy

Proposed 6.75e3 7.88e3 99.29 221.45 4.91e3 5.14e3
ARIMA 4.55e3 7.54e3 77.11 256.32 2.94e3 2.36e3
SIRD 1.69e5 2.15e5 3.52e4 3.65e4 9.62e3 8.33e3
Gaussian 2.85e4 6.01e4 2.46e3 5.63e3 5.54e3 5.77e3
Logistic 3.45e4 4.60e4 5.02e3 6.46e3 8.58e3 7.73e3
ONMF 2.87e4 3.98e4 5.75e3 9.79e3 2.79e3 4.41e3

Colombia

Proposed 1.53e3 3.26e3 25.80 228.91 1.11e3 3.62e3
ARIMA 9.20e4 2.47e4 115.71 513.95 2.38e3 5.08e3
SIRD 5.28e4 4.05e4 1.68e3 1.4438e3 5.17e3 8.02e3
Gaussian 8.44e4 1.35e5 525.69 1.33e3 6.83e3 9.56e3
Logistic 6.81e4 1.03e5 1.65e3 2.53e3 7.66e3 1.03e4
ONMF 1.01e4 1.36e4 445.71 384.33 6.27e3 8.91e3

The proposed method predicts the recovered cases for Ger-
any with the least RMSE and provides considerable improve-
ent over ARIMA. For daily infections and death cases, ARIMA
16
works better, as shown in Fig. 16(f). However, the RMSE val-
ues are very close, 0.8 times of the proposed method for in-
fected cases and 0.83 times for death cases. For France, the
proposed algorithm works better than ARIMA for recovered cases
and equivalently for daily infected cases. However, for recovered
cases SIRD gives the best performance with 0.04 relative RMSE
and ONMF gives 0.56 relative RMSE for infected cases. For the
COVID-19 cases of the USA, the proposed methodology forecasts
the recovered cases and death cases far better than the existing
methods by a factor of 101 and 103, respectively. However, for
daily infected cases, ARIMA estimates the future cases better than
the proposed method by a very small margin with relative RMSE
of 0.74. This is also observed for Brazil daily infected cases, where
the performance of ARIMA is slightly better than the proposed
method, with 0.81 relative RMSE. As observed from Fig. 10(d)
and Fig. 11(a), the actual cases have fluctuations and thus, the
low pass model obtained using the proposed method is not able
to predict these high-frequency changes. For Turkey, the per-
formance of the proposed prediction algorithm is superior for
cumulative recovered cases and death cases. For daily infection
cases, it performs better than ARIMA but falls short when com-
pared to ONMF. The ARIMA model predicts the future cases for
Italy with the least RMSE. However, the performance is very close
to that of the proposed method.

Considering an average over all ten countries, Fig. 17(e), the
proposed method predicts the recovered cases with 0.32 times
RMSE as compared to ARIMA, 0.07 times of SIRD, 0.04 times
that of composite Gaussian growth model, 0.05 times composite
Logistic growth model, and ONMF model. For prediction of death
cases, the proposed method predicts the 14 days data with RMSE
0.40 times as compared to ARIMA, 0.02 times that of SIRD, 0.04
times composite Gaussian growth model, 0.05 times composite
Logistic growth model, and 0.03 times of RMSE obtained with
ONMF model. The performance of the proposed method in pre-
dicting daily infected cases is compared using RMSE values, which
is 0.38 times that of RMSE obtained when the ARIMA model is
used, 0.27 times that of SIRD, 0.56 times of composite Gaussian
growth model, 0.2 times composite Logistic growth model, and
0.14 times the RMSE of ONMF model.

6. Conclusion and future work

In this work, we reviewed and benchmarked the most popu-
lar modeling techniques of COVID-19 data estimation and con-
tinuous prediction. These models are ARIMA, SIRD, composite
Gaussian growth model, composite Logistic growth model, and
dictionary learning model (i.e., ONMF). Composite Gaussian and
Logistic methods model the COVID-19 data by a number of over-
lapping Gaussian and Logistic distribution waves, where each
basic wave is localized in time and considered as a representa-
tion of the epidemic. However, the assumption of having similar
waves throughout the epidemic duration may not give realistic
forecasts. Therefore, to overcome this drawback, we also re-
viewed the recently proposed model-free approach of dictionary
learning. This method learns the waves directly from the data
without assuming any predefined shape. We also proposed a new
data modeling strategy by estimating a trend of the data and
then using an optimized ARIMA model. The trend is obtained
using a low-pass Gaussian filter. The performance of these models
was compared based on the RMSE values obtained for the 7-days
and 14-days ahead prediction, and it was shown that for most
of the cases the performance of the proposed methodology is
far superior to the other existing methodologies. The number of
daily COVID-19 infections, the cumulative number of recovered
cases, and the cumulative deaths reported for India, the USA, the
UK, Russia, Brazil, Germany, France, Italy, Turkey, and Colombia
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Table 3
ARIMA model as used in the proposed methodology to develop models for different countries for cumulative recovered
cases, cumulative death cases, and daily infected cases.
Country Recovered cases Death cases Daily infections

Model RMSRE Model BIC Model MSPE

India ARIMA(6,1,3) 0.06 ARIMA(8,2,7) 6.01 ARIMA(4,1,3) 3.16e3
USA ARIMA(9,2,9) 0.23 ARIMA(9,1,8) 20.17 ARIMA(7,2,7) 2.66e3
Brazil ARIMA(9,2,8) 0.26 ARIMA(6,2,9) 108.46 ARIMA(6,2,7) 3.65e4
Russia ARIMA(7,2,8) 0.07 ARIMA(1,1,10) 263.24 ARIMA(8,2,3) 503.46
UK ARIMA(9,2,3) 0.30 ARIMA(4,1,7) 56.44 ARIMA(7,2,8) 301.72
Germany ARIMA(7,1,2) 0.15 ARIMA(3,2,6) 6.04 ARIMA(9,2,4) 9.83e5
France ARIMA(5,2,3) 0.85 ARIMA(9,2,10) 6.80 ARIMA(10,2,7) 3.28e7
Turkey ARIMA(10,2,9) 8.31 ARIMA(8,2,1) 9.00 ARIMA(6,2,4) 1.82e3
Italy ARIMA(8,2,2) 0.25 ARIMA(3,2,6) 9.97 ARIMA(9,2,2) 1.27e3
Colombia ARIMA(9,2,8) 0.09 ARIMA(2,1,5) 6.58 ARIMA(2,2,8) 725.13
have been considered for modeling and continuous prediction.
Although we have considered these mentioned countries only in
our study, the proposed methodology can be used for the con-
tinuous monitoring and prediction of COVID-19 of any country,
state, and region.

So far, a number of methods have been proposed for forecast-
ng COVID-19 data. The utility of these methods is still limited for
ong-term forecasting and predicting onsets of COVID-19 waves,
nd in exploring the data correlation geographically. Further-
ore, it is also imperative to provide insight into any model with

espect to assessment, planning, and policy-making for combat-
ng the spread of COVID-19. Policy data integration with forecast-
ng models is another important work that is worth exploring in
he future as policies and public health guidelines issued at the
tate and local level could aid in the advancement of forecasting
odels and increasing accuracy of forecasting as well as expand-

ng the potential impact of the forecasts on policy decisions.
eal-time live forecasting is one of the primary research areas to
xplore in the future. Hybrid algorithms based on the proposed
odel can be explored for the same.
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